Depolarization in Ice Crystals and Its Effect on Radar Polarimetric Measurements
نویسندگان
چکیده
Simultaneous transmission and reception of horizontally and vertically polarized waves is a preferable choice technique for dual-polarization weather radar. One of the consequences of such a choice is possible cross-coupling between orthogonally polarized waves. Cross-coupling depends on depolarizing properties of propagation media, and it is usually negligible in rain because the net mean canting angle of raindrops is close to zero. Snow crystals at the tops of thunderstorm clouds are often canted in the presence of strong electric fields and produce noticeable cross-coupling between radar signals at horizontal and vertical polarizations if both signals are transmitted and received simultaneously. As a result, peculiar-looking radial signatures of differential reflectivity ZDR and differential phase DP are commonly observed in the crystal regions of thunderstorms. The paper presents examples of strong depolarization in oriented crystals from the data collected by the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) and a theoretical model that explains the results of measurements. It is shown that the sign and magnitude of the ZDR and DP signatures strongly depend on the orientation of crystals and a system differential phase on transmission.
منابع مشابه
Detection of Ice Hydrometeor Alignment Using an Airborne W-band Polarimetric Radar
This paper presents airborne W-band polarimetric radar measurements at horizontal and vertical incidence on ice clouds using a 95-GHz radar on the University of Wyoming King Air research aircraft. Coincident, in situ measurements from probes on the King Air make it possible to interpret polarimetric results in terms of hydrometeor composition, phase, and orientation. One of the key polarimetric...
متن کاملHydrometeor Identification from W-band Polarimetric Measurements
Automatic classifications of radar polarimetric measurements into hydrometeor types using fuzzy-logic or other similar algorithms are now routinely done using ground-based cm-wavelength polarimetric radars (e.g., Vivekanandan et al. 1999; Lim. et al. 2005). In most of these algorithms, the polarimetric thresholds for various hydrometeor types are based on computational studies. A comprehensive ...
متن کاملCloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements
The recent deployment of multiparameter, polarimetric radars provides the impetus for development of microphysical retrievals. The primary objective of this paper is to describe a particle classification technique that makes use of polarimetric radar observations. The particle classification technique is computationally simple enough to be implemented for real-time research and operational fiel...
متن کاملModeling and Interpretation of S-Band Ice Crystal Depolarization Signatures from Data Obtained by Simultaneously Transmitting Horizontally and Vertically Polarized Fields
Data collected by the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) in Taiwan are analyzed and used to infer storm microphysics in the ice phase of convective storms. Both simultaneous horizontal (H) and vertical (V) (SHV) transmit polarization data and fast-alternating H and V (FHV) transmit polariz...
متن کاملObservations of Ice Crystal Habits with a Scanning Polarimetric W-Band Radar at Slant Linear Depolarization Ratio Mode
Scanning polarimetric W-band radar data were evaluated for the purpose of identifying predominant ice hydrometeor habits. Radar and accompanying cloud microphysical measurements were conducted during the Storm Peak Laboratory Cloud Property Validation Experiment held in Steamboat Springs, Colorado, during the winter season of 2010/11. The observed ice hydrometeor habits ranged from pristine and...
متن کامل